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Abstract 
This study focuses on predicting ground vibrations 

generated by blasting activities in open cast limestone 

mining by integrating blast design parameters with 

conventional variables. Blasting is a critical operation 

for the effective removal of overburden and mineral 

extraction, but it can lead to significant adverse effects, 

particularly ground vibrations, which pose challenges 

for both mining and environmental engineers. 

Conventional methods for estimating these vibrations 

typically focus on the distance from the blast site and 

the maximum charge per delay as key independent 

variables.  

 

Recognizing the substantial impact of blast design on 

vibration levels, this research employs multiple linear 

regression analysis to incorporate additional factors 

such as blast design elements. By developing a more 

comprehensive predictive model, the study aims to 

enhance the accuracy of ground vibration forecasts, 

ultimately contributing to safer and more sustainable 

mining practices. 
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Introduction 
During the process of blasting, a little proportion of the 

energy produced by the explosion was used for the purpose 

of breaking and dislodging rocks, but the majority of the 

energy results in negative environmental consequences 

including ground vibrations, air overpressure, fly rocks and 

rebound6,12. The aforementioned impacts have the potential 

to compromise the structural stability of tall retaining walls, 

benches and other architectural structures. Mining engineers 

have a significant difficulty in devising blast geometry that 

maximizes the use of explosive energy only for the purpose 

of rock fragmentation. Therefore, the design of blasts is 

crucial in mitigating ground vibrations. 

 

One approach to mitigating ground vibrations is through the 

use of advanced blasting techniques. These techniques 

involve carefully selecting the type and amount of 

explosives used as well as optimizing the timing and 
sequencing of detonations1,2. Additionally, engineers can 

employ specialized blasting materials such as cushioning 

agents or delay detonators to further minimize ground 

vibrations and their potential impact on nearby structures. 

By implementing these measures, mining engineers can 

strike a balance between efficient rock fragmentation and 

minimizing the environmental consequences associated with 

blasting operations. This approach is crucial in areas where 

mining activities are close to residential or commercial 

areas.  

 

By carefully selecting the type and amount of explosives, 

engineers can ensure that the rock is efficiently broken down 

while minimizing the risk of damage to nearby structures. 

Furthermore, the use of cushioning agents or delay 

detonators can help to absorb the shockwaves generated 

during blasting and reducing the vibrations transmitted to the 

surrounding environment. Overall, these measures allow 

mining engineers to carry out their operations in a 

responsible and sustainable manner.    

 

However, it is crucial from a scientific standpoint to use site-

specific control blasting techniques in order to precisely 

estimate and mitigate the potential damage to structures 

caused by blasting. At present, the USBM equation 

is used for the purpose of forecasting the ground vibrations6. 

Generally, the impact of blast induced ground vibrations was 

assessed in the form of Peak Particle Velocity (PPV). The 

USBM equation only takes into account two factors, namely 

distance (D) and maximum charge per delay (MCD). 

However, other additional elements also exist that exert 

influence on the ground vibrations caused by blasts12. 

Research has been conducted to forecast ground vibrations 

generated by blasts, using a combination of controlled and 

uncontrollable elements through the implementation of soft 

computing methods. 

 

Various machine learning models including Artificial 

Neural Networks (ANN)10,12, Random Forest (RF)17-19, 

Support Vector Machines (SVM)4,7-9,11,14-16 and logistic 

regression, have been used for the purpose of predicting and 

modeling ground vibrations caused by blasts. Presently, 

ground vibrations have emerged as the predominant area of 

focus in the investigation of blast effect for several machine 

learning applications. The prediction process encompasses 

the careful selection of input parameters, the use of a training 

model and the subsequent prediction of the desired output. 

The range of input parameters may vary from a minimum of 

two to a maximum that is determined by the algorithm's 

robustness and the computational resources at hand. 
 

Various researchers have examined distinct sets of 

significant parameters in order to forecast ground vibrations 
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and have developed diverse artificial neural network (ANN) 

designs to enhance the precision of these predictions. Certain 

studies examined a limited number of factors, with some 

only considering two, while others explored a broader range 

of characteristics, with as many as 13 being taken into 

account in order to forecast the ground vibrations resulting 

from blasts10. The development of the equation to forecast 

the ground vibrations caused by explosions has been 

hindered by the challenges encountered in data collection. 

Furthermore, the data available for analysis remains largely 

unchanged as the overall blast design remains consistent 

across the entire mining operation. 

 

Identifying the exact contributing components has proven to 

be a challenging task owing to the intricate nature of the blast 

phenomena and the multitude of forces at play. However, 

previous research has examined several aspects that 

contribute to blast-induced ground vibrations including 

explosive characteristics, blast design parameters, 

geological circumstances and rock mass attributes. The 

primary factors considered in the estimation of blast-induced 

ground vibrations include the distances between the blast 

zone and monitoring point, maximum charge per delay, 

velocity of detonation, blast hole depth, burden, spacing, 

stemming height, powder factor, rock-quality designation 

(RQD) and p-wave velocity12. 

 

 In this research, an endeavor was undertaken to formulate 

an equation by integrating blast design parameters as an 

input, in addition to the commonly employed inputs, namely 

D and MCD. In order to address the variation in blast design 

parameters within the mine, data was gathered from two 

limestone mines that employed distinct blast designs. 

 

Study Area 
Mine 1: The Zuari limestone mine is a mechanized mine. 

Combination of 7.2 m³ excavators and 60 MT dumpers is 

used to transport the blasted material. The blast holes are 

drilled with 2 drill machines of 320 HP for drilling 150mm 

diameter holes. In addition, dozer, road grader for haul road 

maintenance and rock breaker to avoid secondary blasting 

were used at the mine. To suppress the dust, drill machines 

are provided with water tanks of adequate capacity. The 

mine is having three working benches advancing in north 

and west directions with bench height of maximum 10m. 

The dimension of the pit is 1817m X 924m X 35m (NS-

1817m, EW- 9024m, depth-35m). One way traffic system is 

implemented and the lead distance from 1st bench to crusher 

hopper is 2.8 km, 2nd bench is 2.50 km and 3rd bench is 2.2 

km. A view of mine working is shown in figure 1. 

 

Mine 2: The Bharathi limestone mine is a mechanized mine. 

Combination of 6.5 m³ excavators and 55 MT dumpers is 

used to transport the blasted material. The blast holes are 

drilled with 2 drill machines of 270HP and 380HP for 

drilling 150mm diameter holes. In addition, dozer, wheel 

loader, Back hoe, road grader for haul road maintenance and 

rock breaker to avoid secondary blasting were used at the 

mine. To suppress the dust, drill machines are provided with 

water tanks of adequate capacity. The mine is having three 

working benches advancing in east and west directions with 

bench height of maximum 8m. A view of mine working is 

shown in figure 2. 

 

Material and Methods 
Instruments details: Blast induced vibrations were 

monitored by seismographs namely Micromate, Mini Mate, 

Minimate Blaster and Mini Super graph II. All the 

seismographs record vibration in three directions i.e. 

Longitudinal (L), Vertical (V) and Transverse (T). They also 

record dominant frequency of vibration and compute the 

peak vector sum of the vibration.          

 

Methodology: The methodology used in this study is as 

follows: 

 

1. Selection of input and output variables. 

2. Data collection and analysis. 

3. Development of an equation using multivariate 

regression analysis. 

4. Validation of equation with unseen data.

 

  
Fig. 1: A view of Zuari mine working                                   Fig. 2: A view of Bharathi mine working. 
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Selection of input and output variables:  There are two 

type of parameters which affect the blast induced ground 

vibrations i.e. controllable and non-controllable parameters. 

The non-controllable parameters are those, over which the 

blasting engineer does not have any control. The local 

geology, rock characteristics and distances of the structures 

from blast site are non-controllable parameters. However, 

the control on the ground vibrations can be established with 

the help of controllable parameters as follows: 

 

1.  Maximum charge per delay. (MCD) 

2.  Delay Interval and Delay sequence.  

3.  Direction of blast progression.  

4.  Blast design.  

a) Burden (B) 

b) Spacing (S) 

c) Hole Length (HL) 

d) Number of holes (NH) 

e) Number of rows (NOR) 

f) Total charge per round.(TC) 

g) Average charge per hole.(ACPH) 

h) Stemming Length (SL) 

i) Charging Length (CL) 

5. Bench design 

a) Depth from the surface 

b) Bench height (BH) 

c) Bench inclination 

6.  Explosives and its parameters.  

7.  Quality of blasting accessories.  

8.  Type of face (Free face, Choked face etc.).  

9.  Confinement.  

 

Among the controllable parameters, only few parameters i.e. 

B, S, HL, NH, NOR, TC, SL, CL along with commonly used 

parameters i.e.  MCD and distance from blast activity to 

measuring station (D) are taken into consideration to develop 

an equation because other parameters are having the 

uniformity in nature and some of the parameters could not 

be measured by the mine management. The equation should 

be useful to mine management to design the blast that will 

limit the blast induced ground vibrations within the threshold 

limit value as prescribed by Directorate General of Mines 

Safety (DGMS), India5. The output variable is peak particle 

velocity (PPV). 

 

Data collection and analysis: To develop an equation to 

predict the blast-induced ground vibrations of limestone 

mines, huge data was collected from two lime stone mines 

i.e. about 81 data sets. Figure 3 shows the vibration 

recording using seismographs. Some of the data was used for 

checking the performance of the model in order to check the 

model accuracy. The data related to PPV and dominant 

frequency was collected by using micromate, minimate, 

minimate blaster and mini super graph-II. The input 

parameters were collected by field visits and measuring the 

lengths by tape. The data was then normalized by using eq. 

1 in order to maintain the performance as good as possible. 

Normalization transforms these values in the range [0, 1] and 

make them ready for model development13. The blast delay 

sequence and drill hole schematic diagram are shown in 

figures 4 and 5. The descriptive statistics of the collected 

data is shown in figure 6.  Further correlation analysis was 

carried out in order to know the correlation between 

variables. The results of the correlation analysis are 

presented in table 2. The PPV is positively correlated with 

Hole Length (HL), Charge Length (CL), Burden (B), 

Spacing (S), Stemming Length (SL) and Maximum Charge 

per delay (MCD) and negatively correlated with no. of holes 

(NH), number of rows (NOR) and distance from blasting site 

to monitoring station (D). PPV has strong positive 

correlation with charge length (CL) and maximum charge 

per delay (MCD) and strong negative correlation with 

distance from blasting site to monitoring station (D) and 

dominant frequency (DF) is positively correlated with 

number of holes (NH), number of rows (NOR) and is 

negatively correlated with HL, CL, B, S, SL, MCD, D and 

PPV. It has strong positive correlation with NH and strong 

negative correlation with HL, MCD.  

 

Xnew =
(X − Xmin)

(Xmax − Xmin) 
                                                       (1) 

 

 
Fig. 3: Vibration monitoring 

 

Model development (Multiple Linear Regression): 

Multiple linear regression is a traditional statistical tool to 

determine the relationship between dependent and 

independent variables. The equation of the multiple linear 

regression analysis is as follows: 

                                                       

Y = β0 + βi ∗ Xi + · · · + e                                                    (2) 

 

            where Y is the predicted variable, Xi (i = 1, 2 . . . P) is the 

predictor, β0 is called intercept (coordinate at origin), βi (i = 

1, 2. . . P) is the coefficient on the ith predictor and e is the 

error associated with the predictor. The equation we got after 

the regression analysis using minitab software is as follows: 

 

PPV = -71.4+ 2.32 NH+ 11.18 NOR- 70.8 HL+ 79.5 CL 

- 5.8 B+ 5.45 S + 74.7 SL - 0.0289 TC + 0.292 MCD 

- 0.1377 D                         (3) 

 

The multiple linear regression analysis was carried out with 

95% confidence interval. The p-value less than 0.05 is 

statically significant and rejects the null hypothesis whereas 

p-value greater than 0.05 is vice versa3. 
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Model validation using unseen data: To validate the 

regression equation, data was gathered from two lime stone 

mines. A regression analysis was conducted to compare the 

predicted and actual monitored PPV. The resulting 

regression graph is depicted in the figure 7. It is evident from 

the figure 7 that the R2 value between the predicted and 

actual data is 0.82, indicating a strong relationship between 

the two variables. 

 

 

Results and Discussion 
The results presented in table 1 indicate that the factors CL, 

SL and D exhibit statistical significance and have a notable 

impact on the PPV. These parameters were found to 

influence PPV more substantially compared to other factors. 

In contrast, most of the remaining parameters, with the 

exception of HL, demonstrated minimal effect on PPV, with 

HL showing a negligible difference from the significance 

threshold of 0.05. 

 

Table 1 

P-values of input variables 

Term Coef SE Coef T-Value P-Value 

Constant -71.4 90.6 -0.79 0.433 

NH 2.32 2.26 1.03 0.309 

NOR 11.18 7.19 1.56 0.124 

HL -70.8 37.9 -1.87 0.066 

CL 79.5 40.1 1.98 0.051 

B -5.8 10.8 -0.53 0.597 

S 5.45 8.71 0.63 0.533 

SL 74.7 35.0 2.13 0.036 

TC -0.0289 0.0299 -0.97 0.337 

MCD 0.292 0.821 0.36 0.723 

D -0.1377 0.0133 -10.35 0.000 

 

 
Fig. 4: Schematic diagram of drill hole 

 

 
Fig. 5: Delay sequence used in lime stone mine 
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Fig. 6: Descriptive statistics of collected data with 95% confidence intervals 

 

 
Figure 7: Regression analysis for Actual monitored PPV vs Predicted PPV using regression equation 
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Table 2 

Correlation matrix of collected data 

 NH NOR HL CL B S SL TC MCD D PPV 

NOR 0.190           

HL -0.346 0.172          

CL -0.337 0.133 0.971         

B -0.511 0.074 0.682 0.601        

S -0.532 0.051 0.592 0.531 0.828       

SL -0.255 0.147 0.642 0.443 0.609 0.519      

TC 0.507 0.311 0.486 0.529 0.153 0.214 0.121     

MCD -0.389 0.254 0.850 0.866 0.695 0.698 0.426 0.572    

D 0.132 0.149 -0.180 -0.228 -0.101 -0.160 0.053 -0.082 -0.161   

PPV -0.040 -0.018 0.212 0.232 0.048 0.069 0.064 0.104 0.118 -0.763  

DF 0.191 0.086 -0.431 -0.426 -0.301 -0.359 -0.310 -0.263 -0.431 -0.003 -0.029 

 
Equation 3 has been validated using an independent set of 

unseen data, achieving a strong coefficient of determination 

(R² = 0.82), indicating that the equation provides reliable 

predictions of PPV. The correlation between the predicted 

and actual PPV values is strong, confirming the accuracy of 

the model in forecasting the outcomes of different blast 

designs. This strong correlation emphasizes the robustness 

of the equation as a tool for predicting PPV based on various 

blast parameters.  

 

The use of eq. 3 by mine management offers a practical 

approach for forecasting PPV values in different blast 

scenarios. In instances where the predicted PPV exceeds the 

regulatory limits set by the DGMS circular5, the equation can 

guide necessary adjustments to the blast design to ensure 

compliance with safety standards. 

 

Conclusion 
In conclusion, the findings suggest that charge length (CL), 

stemming length (SL) and distance (D) are the most 

significant factors affecting PPV, while other parameters, 

including HL, have a lesser influence. Equation 3 has proven 

to be a reliable predictive tool for PPV, with a high 

coefficient of determination (R² = 0.82) and a strong 

correlation between predicted and actual values. This 

demonstrates that eq. 3 can be effectively utilized by mine 

management to forecast PPV for various blast designs. 

 

When PPV values exceed the limits specified by the DGMS 

circular5, eq. 3 can assist in adjusting the blast design to meet 

the required safety criteria. Overall, the equation provides a 

valuable tool for optimizing blast designs and ensuring the 

safety and efficiency of mining operations. 
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